
THE GROWTH AND DECAY OF A FROZEN LAYER 

IN FORCED FLOW 

MICHAEL EPSTEIN 
Argonne National Laboratory, Reactor Analysis and Safety Division, Argonne, Illinois, U.S.A. 

(Receiaed 9 December 1975 and in revisedform 24 February 1976) 

Abstract-The problem of the unsteady behavior of a frozen layer in a liquid flowing past a cold thick 
(plane) wall is studied analytically. The integral (profile) method is utilized, which takes full account of 
the movement of the phase conversion front and transient heat conduction within the wall. The growth 
of the frozen layer comes to a stop when the conduction heat flux into the wall balances convection 
from the liquid. At this instant, the frozen layer will begin to melt; it ultimately disappears when 
melting is complete. Numerical predictions of the maximum frozen layer thickness, the time the frozen 
layer passes through the maximum, and the total lifetime of the layer are obtained displaying the principal 

effects of two governing dimensionless parameters. 

NOMENCLATURE 

specific heat: 
convective heat-transfer coefficient; 
thermal conductivity; 

latent heat of fusion; 
heat flux to crust surface; 
time; 

temperature: 
initial temperature of wall; 
distance measured from wall-crust interface. 

Greek symbols 

thermal diffusivity; 
dimensionless heat of fusion, equation (12); 

crust thickness; 
dimensionless crust thickness, equation (9); 
thermal wave thickness; 
dimensionless thermal wave thickness, 

equation (10); 
crust thickness on isothermal wall at steady 
state, equation (17); 
dimensionless wall-crust interface 
temperature, equation (8); 
crust growth constant, equation (20); 

density; 
kpc ratio, equation (13); 
dimensionless time, equation (11); 

dimensionless crust lifetime; 
temperature profile shape factor, 

equation (6). 

Subscripts 

4 at wall-crust interface; 
inax, at maximum crust thickness ; 
mp, equilibrium melting point; 

m, in flowing liquid far from crust surface; 

1, frozen crust material; 

2, wall material. 

1. INTRODUCTION 

THIS paper is concerned with the transient behavior 
of the frozen layer (or “crust”) that forms when a 

warm liquid suddenly flows over the face of a semi- 
infinite solid body that is at a temperature below the 
freezing point of the liquid. This type of solidification 
problem arises, for example, in the freezing of a lava 
stream flowing over rock or soil. The application that 
motivated the present study is the freezing of molten 
steel or UOZ fuel in the cold, thick-walled channel 
regions surrounding a liquid-metal fast reactor core 

(following a hypothetical core-disruptive accident). The 
prediction of ablation of the channel wall or flow 
blockages by excessive solidification requires an under- 

standing of the transient behavior of the frozen layer 
on thechannel wall. The present investigation is limited 
to the flow along a cold plane wall of infinite extent 

in the direction normal to the flow. The solidification 
process is initiated by suddenly allowing the warm 
liquid to flow over the wall. Normally the average 
temperature of the liquid will be higher than its 
solidification temperature. As the frozen crust on the 
wall increases in thickness, heat is transferred by con- 
vection from the flowing liquid to the solid crust-liquid 
interface. Heat is removed from the solidified layer by 
transient conduction through the cold wall. Solidifi- 
cation proceeds as long as the conduction heat flux 
through the frozen crust to the wall exceeds that to 
the crust surface from the flowing liquid. Once the 
thermal boundary layer in the wall is sufficiently large, 
the conduction heat flux into the cold wall exactly 
balances convection from the liquid and there is no 
latent heat generated. The crust reaches a maximum 
size. After this, however, convective heat transfer be- 
comes more than what can be conducted away, result- 
ing actually in reduction in thickness through melting. 
The rate of melting increases with time because the 
conduction heat flux into the cold wall becomes in- 
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creasingly smaller. Ultimately, melting will cause the 
crust todisappear. The crust thickness time history B(t) 
constitutes the result sought. In particular. we are con- 
cerned here with the following three questions: What 
is the maximum crust thickness? At what value of time, 

t. does the crust thickness peak’? At what value of time 

does the crust disappear via melting? Physically, these 
features represent the potential for flow blockage or 
wall ablation in channel flow. 

There is an extensive literature on the solidification 
of flowing liquids on a plane wall [l--S], with most 
predictions being confined to cases of(i) an isothermal 

cold wall or (ii) a thin wall of negligible heat capacity 
which is cooled by a coolant liquid flowing along the 

other side of the wall. In [S], the heat capacity of the 
wall is accounted for. but the wall is sufficiently thin 

so that the growing solid layer thermally “communi- 
cates” with the opposite side of the wall early in the 
transient. In these solidification problems, the frozen 
layer never melts but, instead. approaches a steady-state 

thickness. The results of the calculations for an iso- 
thermal wall appear to be a special case of the solutions 
for the thick (plane) wall of finite thermal conductivity 

presented here. 
A continuous metal casting process known as “dip- 

forming” does involve freezing followed by melting of 
the frozen layer [9, lo].* In this process a cool metal 
bar is passed continuously through a bath of super- 
heated molten metal. Some metal freezes onto the bar 
as it enters the bath. If the height of the bath is great, 
the frozen metal crust will begin to melt. In [ll] an 
analysis is given of the dip-forming process. Under 
most conditions of interest the bar is sufficiently thin 
so that the crust growth and decay behavior depends 
mostly on the heat it takes to raise the temperature 
within the bar uniformly from initial temperature to 

melting temperature. 

2. PHYSICAL MODEL 

A liquid at a fixed bulk temperature T, above its 
solidification temperature Tmp suddenly flows over a 
thick cold wall at an initially uniform temperature 
T,(T, < T,,)t As shown in Fig. 1, a solidification front 

propagates into the liquid from ~1 = 0 at a rate deter- 
mined both by the convective heat flux, q, from the 
liquid to the phase boundary and the rate at which 
the heat of solidification can be conducted from the 
front. Specifically. we make the following simplifying 

assumptions : 
Al. The solidified layer is thin compared with its 

extension in the direction of flow so that heat conduc- 

*The author is indebted to an anonymous reviewer for 
calling attention to the literature on dip-forming. 

tit is assumed here that steady-state flow conditions are 
achieved in the liquid before any measurable crust growth 
occurs. A transient solidification process could be initiated 
by considering an instantaneously cooled wall submerged 
in an otherwise isothermal steady flow of liquid. However, 
in many physically realistic situations, it is difficult to 
imagine freezing to begin in this manner, especially on a 
very thick wall. 

i_s,_j--1_s___l LJ 
FLOW 

FIG. I. Schematic of frozen layer on semi-infinite 
wall.indicatinginstantaneous temperature profile 

and nomenclature. 

tion in this direction is small compared to that normal 

to the flow. 

A2. All physical properties (density, heat capacity, 
thermal conductivity) are considered constant. In addi- 
tion, densities of liquid and solid deposit are taken to 

be the same. 
A3. The Solidification (or melting) front is sharp and 

planar on the scale of the crust thickness, and thermal 
equilibrium exists at the phase conversion front. 

A4. The convective heat-transfer coefficient between 

the flowing liquid and phase boundary remains con- 
stant with time and, therefore, the liquid supplies a 
constant convective heat flux h(T, - T,,) to the crust 

surface at all times. While /1 is considered constant 
for each element of frozen layer, it may vary with 

distance along the cold surface. 
A5. Simple analytic forms (polynomials) can be 

assumed for the temperature profiles in the solidified 
layer and wall regions, provided they are consistent 

with the boundary conditions and the overall heat 
balance requirements. A thermal boundary layer of 
thickness & is assumed to propagate into the cold wall. 

A6. In many cases occurring in practice, the thermal 

boundary lay&r will proceed only a relatively small 
distance into the wall; consequently, the cold wall may 
be considered to extend to infinity in the direction 
normal to the flow (i.e. in the negative l-direction). 

The validity of assumptions Al-A4 was experiment- 
ally demonstrated for the case of solidification of warm 
water flowing over a thin plate cooled from below in 
[12]. Assumption A4, in which thermal convection in 
the liquid is taken to be known and unchanged due 
to thickness variation of the solid phase, has been 
invoked in previous analytical studies involving solidi- 
fication with forced convection [l-8, II] and melting 
with free convection [13]. Assumption A5 allows the 
governing partial differential equations and boundary 
conditions to be replaced by an approximate first order 
system of ordinary differential equations using the well- 
known integral (moment) method [14] (see Section 3). 

3. ANALYSIS 

Subject to the above assumptions, conditions at the 
moving phase boundary (JJ = S), at the solidified layer- 
wall interface (y = 0), and across the solidified layer 
(subscript 1) and wall region (subscript 2) suffice to pro- 
vide the desired relationship between S(l) and the 
parameters of the problem. These conditions are: 

T1 (0, t) = &(O, t) = T(t) (temperature continuity) (1) 



k, (??),=O = k,is),=, (heat flux continuity) 
(2) 

an energy balance which equates the instantaneous 
latent heat generation p 1 L dd/dt to the conductive heat 
loss to the crust minus the convective heat transport 

to the phase boundary, i.e. 

a macroscopic heat balance across the solidified layer 

d * 
-1 T,(y>t)dL‘ 
dt o 

and a macroscopic heat balance across the thermal 

boundary layer in the cold wall 

d a 

-s dt -a, 
T~(JJ, t)d!, 

Equations (l)-(5) constitute five conditions which 
the temperature profiles must satisfy. If we assume 
second-order polynomials for the temperature distri- 
butions Tl (y, t) and T2(y, t), they take the forms 

7-1 (Y, t) - Tmp 

7;(t) - Lp 
=~ci,[l-~]+[l-ictrl[l-~]* 

(0 < Y G 4 (6) 
where $(t) is a shape function eliminated in the course 
of the analysis (in favor of the remaining dependent 

variables), and 

75 (Y, t) - To 
= 

I 
7;(t)--T, 

1+4’ 
1 2 

sT(t) 
(-6, < y < 0). (7) 

It should be noted that equation (7) is consistent with 
the notion of a thermal wave thickness, beyond which 
the effects of the phase change process are negligible. 

Moreover, in writing equations (6), (7) we have already 
invoked the condition of temperature continuity at 
.1’ = 0. 

It is now convenient to introduce the following set 
of dimensionless variables and parameters: 

IT;- To 
oi E ~ 

Tmp - To 

(dimensionless crust-wall interface temperature) (8) 

A = Wm - T&J 6 

k,K,,- To) 
(dimensionless crust thickness) (9) 

“’ h( T, - Tmp) 

k~(Tm,- dT 

(dimensionless thermal wave thickness) (10) 

h*(L - Tn,? 
’ = k:(T,,- To)’ ‘lt 

(dimensionless time, Fourier number) (11) 
FIG. 2. Effect ofkpc ratio on crust thickness-time 

histories (8 = 1.0). 
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(dimensionless latent heat, phase change number) (12) 

(kpc ratio). (13) 

Then, from equations (2)-(7), the following system of 
dimensionless equations is obtained. 

dAT 6 AT dQi 
_= 
d7 G-Fx 

(14) 

p E _ 2(1;6i) yi 1 

(15) 
T 

-:0iAT[l+($y]=O. (16) 

Equations (14)-(16) re-express the mathematical 
formulation of the model and are sufficient to deter- 

mine the three coupled unknown functions AT(T; u, fl), 
A(z; c, p), and 6i(Z; o,p) subject to the initial condi- 
tions AT = 0, A = 0 when z = 0. It can be shown that 

AT, A, and Bi can each be represented by a power 

series of the form 

“tl b. 7”” ; 

however, this series can only be used for short times. 
As z increases the series ceases to converge and becomes 
oscillating divergent. Therefore, for longer times, in- 
cluding the period in which the crust thickness passes 
through a maximum, we require a computer solution. 
For this purpose and to utilize available computer 
subroutines, equations (14)-(16) were converted to an 
equivalent coupled system of first-order differential 
equations by differentiating equation (16). The resulting 
system was integrated in the forward direction using 
the power series solutions to obtain the correct starting 
behavior. Numerical integration was performed using 
a library program (based on the Gear method [15]) 
available at the Applied Mathematics Division of 
Argonne National Laboratory. A typical case ran in 
about 6 s on the Laboratory Computer Center IBM 370 
system. 

4. RESULTS AND DISCUSSION 

A typical set of crust thickness-time curves is shown 
in Fig. 2 for several values of the kpc ratio (for the case 
fi = 1). One notes that A(t) passes through a maximum 

I “‘~““I ““““1 ‘“““7 



value A,,.,, at a time T,,,.,~ At this extremum, the heat 
flux coming from the liquid flow is equal to that re- 
moved through the wall by conduction. The rate of 
solidification passes through a stage of zero speed and 

melting bcginh. In the case of an isothermal wall 
10 + x ). the frozen layer never melts; rather it ap- 
proaches a steady-state \aluc ii,, which can be obtained 
by a simple heat balance [5] : 

(171 

This thickness has been used here as a reference length 

so that A = G5, [see equation (9)]. Savino and Siegel 
[5] hal#e obtained an analytical expression by an iter- 

ation technique for the growth of a solid layer on an 
isothermal wall. This expression is plotted in Fig. 2. 
As expected, when the I\~x ratio is very targe. the 
growth behavior initially is that of the growth of a 
solidified layer on an isothermal wall. Ultimately, how- 

ever. A drops below this asymptote, owing to the effects 
of heat conduction in the wall. It should be noted that 

there is good agreement between the integral method 
and the analytical expression provided by Savino and 
Siegel [5] in this special case g---f z. For a given value 
of /i. the 0 ---* L case probably constitutes the most 
stringent test of accuracy of an approximate method 

since in this cast the temperature profile exhibits the 
greatest curvature. Further discussion on the accuracy 
ofthe integral method will be postponed until Section 5. 

In Fig. 3 arc shown the tcmpcrature distributions 

within the frozen layer and the wall. The dimension- 
less temperature is shown as a function of position 

I ’ I I 1 

IT=5 8=02 

-10 -08 -06 ~04 02 0 02 04 06 08 IO 

+, $ 

FI(,. 3. t:lTcct of tlmc on temperature profile in 
fro/en layer and cold wall. (Profile at i : TV,, 

dashed for clarity only.) 

normalized by crust thickness for J’ > 0 and thermal 
boundary-layer thickness for J’ < 0. The dimensionless 
time is treated as a parameter. Since fi = 0.2 is rather 
small, we expect a large heat capacity effect. It is 
interesting to note the behavior of the curves as 1 
bccomcs large. Initially the temperature profile within 
the growing crust exhibits some curvature. due to the 
effects of heat capacity (energy storage): however, the 
profile becomes linear as the crust reaches maximum 
thickness and tends to remain fairly close to linear 
throughout the melting period. This merely implies 
that once solidification ends and melting begins, the 
rate of movement of the phase boundary is very much 
slower than the rate of propagation of a thermal wave 

IO3 
IO’ IO0 IO’ 

P 
FIG. 4. Maximum crust thickness as a function 
of heat of fusion parameter b; dependence on 

kpc ratio, 0. 

FIG. 5. Time to reach maximum crust thickness 
as a function of heat of fusion parameter. fl: 

dependence on kpc ratio, CT. 

within the crust. The temperature distribution within 
the crust is approximately that corresponding to steady 
state. 

We now focus attention on the A,,,(u,fl) and 
t,,,(o, fi) relations shown in Figs. 4 and 5. Increasing 
the kpc ratio, CT, is seen to have the expected effects 
of increasing the value of A,,, and lengthening the 
solidification period T,,,~~ of the A(r) trace. Of course, 
A,,, approaches unity (i.e. 6 --t 6,) for large values of. a. 
The predicted behavior of the crust lifetime, zlif,(a, p), 
is shown in Fig. 6. It is noteworthy that 51~1~ is 
insensitive to the dimensionless latent heat p. This is 
because during the melting period (7 > t,,,). well 
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FIG. 6. Crust lifetime as a function of heat of 
fusion parameter, 8; dependence on kpc ratio, 6. 

before the solid deposit disappears, the initial effects of 
heat capacity (or temperature profile distortion) within 

the solid deposit are “forgotten”. The convective heat 
flux from the liquid flow is transmitted directly to the 
solid deposit-wall interface. The interface temperature 

Tat y = 0, therefore, approaches the simple asymptotic 
behavior 

7: T +2G-T,,) azr li2 
,N 0 

k2 ( > 
(18) 

lr 

which is the surface temperature corresponding to 
constant heat flux at the surface of a semi-infinite solid 
[16]. Since the solid deposit is completely melted when 
7;: -+ Tmp, we obtain the following simple estimate for 

rrire 

n 2 
~llk - - rJ 

4 
(19) 

It should be mentioned that when the warm fluid flows 

over a thick wall of the same material, the melting front 
will penetrate the wall when r > 71,fe. The temperature 
profile within the solid wall will asymptotically ap- 
proach a simple, steady exponential form [16] in- 
volving the melting rate (or wall ablation rate) which, 
in turn, will become a linear function of the convective 
heat flux. 

Using the results of this section, it is interesting to 
examine the behavior of an ice layer deposited from 
a flowing water stream at 20°C onto a steel surface 
after being chilled in liquid nitrogen (To = - 196”(Z).* 
For this system u = 6.06 and fi = 0.84. Figures 4-6 
then reveal A,,, z 6.8, T,,,~~ z 1.7, and zllfe zz 25.0. To 
convert these dimensionless numbers to predicted 
maximum crust thickness 6,,,, time t,., for 6 to peak, 

*An experimental investigation of transient freezing in 
tube flows has employed water flowing in channels bounded 
by thick walls initially cooled to the liquid nitrogen boiling 
temperature [17]. 

and crust lifetime trire, we consider turbulent flow over 

a flat plate. The convective heat-transfer coefficient in 
steady turbulent flow is a weak function of the stream- 

wise coordinate. Therefore, the ice growth (and decay) 
will be very nearly one dimensional. For a free stream 
water velocity of lo3 ems-r. we obtain /I =. 0.35cal 
cm-*s-‘K-‘. This estimate leads to the inferences: 

6 max z l.O9cm, t,,, z 4.17s. and tllfC 2 61.4s. 

5. ACCURACY OF THE COMPUTATIONAL METHOD 
AND TRANSIENT CONDUCTION MODEL 

5.1. Accurucg qfthe inteyral method 

The integral (profile) method exploited here lends 
itself well to the treatment of transient conduction 
problems with moving boundaries [l4]. However, in 
any new application, it is desirable to examine its 

accuracy by comparison with a closely related exact 
(or numerical) solution. As usual, these exact solutions 
pertain to much less general phase change problems 
than that explicitly treated in Section 4. We have 
already considered the accuracy of the present method 
when applied to the growth of a solid deposit in the 
degenerate case cr -+ x (isothermal wall) in Section 4 

for fi = 1. Moreover, the validity of the integral method 
in this singular case has been demonstrated in [5] and 
need not be belabored here. Here we examine the 
growth predictions near r = 0 for arbitrary rr and /j. 

In addition, the present method is compared to the 
approximate results of a mathematical model in which 
the transient term is ignored in solving the conduction 

equation in the solid deposit. 
In the neighborhood of t = 0, the interracial heat 

transfer due to pure transient conduction overshadows 
any convection due to liquid flow. In this time domain, 
the problem reduces to that of a solid layer growing 
in a stagnant liquid at its solidification temperature. 
For r near zero, equations (14))(16) simplify to yield 

the growth law 
A = 2;Lr”z (20) 

where i,. the “growth constant”, is given by the implicit 

relation 

@P-t (4)‘J’ 
B 
; jt3 + (:+ 2fl)P + (3) 1,&l = 0. (21) 

0 

Equation (21) is obtained by neglecting the last term 
in equation (15) and assuming solutions of the form 
A _ r’i*, AT _ rr’23 and ai = constant. A mathemat- 
ically exact implicit relationship between the growth 
constant and the parameters /3, G can be found in 
[16], viz.: 

i_exp(i*)[l/o+erf(l)] = I. 
7Pp 

(22) 

As shown in Fig. 7, the integral method faithfully pre- 
dicts the dependence of the growth constant on the kpc 
ratio and dimensionless latent heat. In the parametric 
extreme cr + ic and fi << 1, the results are especially 
encouraging, with equation (21) representing the exact 
growth constant to better than 6,0?,,. 

An approximate solution for the frozen crust be- 
havior can be obtained by neglecting the transient 
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. EXACT 

--INTEGRAL METHOD 

8 
FIG.~. Accuracyofpresent integralmethod when 
applied to the limiting case T near zero; com- 
parison of predicted and exact growth constants 

for various combinations of o and p. 

term in solving the conduction equation in the solid 

deposit and using the resulting value of (7T/1?y at y = 6 
in equation (3) to predict the boundary motion. This 
so-called quasi-steady method, intuitively expected to 
be valid for “thick” thermal boundary layers in the 
solid deposit (i.e. for ,9 >> l), leads to the following 
nonseparable growth-melt law when cast in the 
notation of Section 3 : 

But if equation (23) is formally applied when /I >> CT it 
can be simplified to the form 

P$=&-1 (p >> 1 ; (T << p,. (24) 

Equation (24) immediately gives the crust thickness- 

time history: 

2 CT ,,2 1 
A=o”2ir -Bt ([r >> I ; c7 << /I). (25) 

Comparison of the integral method with this relation 
(see Fig. 8) reveals good agreement in this special case 
B >> 1 and c K /I. 

FIG. 8. Comparison of predicted crust thickness 
time curves for the limiting case /I >> 1. /I B 0. 

Most of the assumptions underlying the present 

model (c.g. constant physical propertics. one-climcn- 
sional heat conduction. and well-defined phase fronl) 
have been discussed by others and need not bc C’OII- 
sidered here. Instead. we focus attention on the 1 aliclitv 
of the assumed constant con\,ective heat-transfer coef- 
ficient (cf. Section 2, A4), for which a convenient quan- 

titative criterion has apparently not prcb iously been 

given. Indeed. thermal convection in the liquid and the 

thickness variation of the solid phase arc both unsteady 
and coupled to each other. It is reasonable to suppose. 

however. that convection in the liquid is relatil cl> 
undisturbed by the moving phase boundary if the time 
necessary for a thermal conduction wave to span the 
liquid boundary-layer dimension, ij,, 2 L/I. is much 

smaller than the time it takes the solidification front 
to traverse &. This leads us to expect negligible 
transient eflects in the liquid flow when i cc I OI- wkn 
/I >> 1 (see Fig. 7).* When /j is not large. however. it 
is not obvious that the liquid transient will, in turn. 
exert much influence on the behavior of the fro/en 

layer. Themaximum transient temperaturcand velocit) 
profile distortions must occur at a very short time after 
the commencement of the freezing process since the 
phase boundary velocity is greatest then. It is during 
this initial period that the flow process has little effect 
upon the freezing process. A detailed treatment of this 
liquid flow transient is beyond the scope of this paper. 

Suffice it to say that it entails the solution of ;I non- 
similar transient boundary layer problem with the heat 
transfer determined simultaneously with the present 
analysis of the behavior of the frozen layer. 

6. CONCLL SIONS 

Using the integral method. we have studied the (one- 

dimensional) behavior of a frozen layer that forms on 

a cold, thick wall in a flowing warm liquid, taking 
into account transient heat conduction within the wall. 
The behavior of the dimensionless frozen layer is shown 
to depend on two parameters. One parameter is cssen- 
tially a dimensionless latent heat of fusion. The second 
is the ratio of the transient conduction heat flow resist- 
ance of the wall to that of the frozen layer. The frozen 
layer grows until it reaches a maximum thickness less 
than the steady-state thickness obtained for growth on 
an isothermal wall. After this the frozen layer under- 
goes a reduction in thickness via melting: it continues 
to melt until it disappears. Numerical predictions for 
the maximum thickness, the time the crust thickness 
peaks, and the total lifetime of the frozen layer are 
displayed graphically. 

In particular systems of experimental interest. it may 
be necessary to relax the one-dimensional assumption 
so the treatment can be applied to the study of the 
behavior of a frozen layer in a thick-walled tube or in 

*Low Prandtl number liquids (i.e. t’r < I b require that 
E./(Piy cc 1. This imposes a condition on the ratio of the 
solidification front speed to the momentum wave speed in 
the liquid boundary layer. 
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a thick-walled rocket-motor nozzle.* Moreover, in fast 6. K. Stephan, Influence of heat transfer on melting and 

reactor safety applications, the surface of the wall may solidification in forced flow, Int. J. Heat Mass Transfer 

melt upon contact with the warm flowing liquid [ 19,201 12,199-214 (1969). 

or during the course of the freezing-melting transient. 
7. C. L. Huang and Y. P. Shih, Perturbation solutions of 

Both of these extensions are readily handled using the 
planar diffusion-controlled moving-boundary problems, 
Int. J. Heat Mass Transfer 18,689-695 (1975). 

heat balance integral (profile) method. 8. R. Siegel and J. M. Savino, Transient solidification of a 
flowine liouid on a cold elate including heat canacities 
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DEVELOPPEMENT ET FUSION D’UNE COUCHE DE 
CONGELATION EN ECOULEMENT FORCE 

R&urn&On ttudie analytiquement le probltme du comportement instationnaire d’une couche cong&lCe 
dans un liquide s%coulant sur une paroi Cpaisse (plane) et froide. La mkthode intkgrale (du profil) est 
utiliske, elle tient pleinement compte du mouvement du front de changement de phase et de la conduction 
transitoire de chaleur dans le mur. Le dtveloppement de la couche congelke s’arrkte lorsque le flux de 
conduction thermique dans le mur Cquilibre la convection dans le liquide. A cet instant, la couche congelke 
va commencer & fondre; elle disparait enfin lorsque la fusion est achevte. On a obtenu des prtvisions 
numCriques de I’kpaisseur maximale de la couche congelee, de l’instant auquel la couche congelte passe 
par un maximum, ainsi que de la dur&e de vie totale de la couche, qui permettent de degager I’influence 

de deux paramitres adimensionnels fondamentaux. 

DAS ANWACHSEN UND ABSCHMELZEN EINER GEFRORENEN SCHICHT 
BE1 ERZWUNGENER KONVEKTION 

Zusammenfaswng-Das instationlre Verhalten einer gefrorenen Schicht in einer Fliissigkeit, die entlang 
einer kalten, dicken ebenen Wand striimt, wird analytisch untersucht. Es wird die integrale Profilmethode 
herangezogen; sie beriicksichtigt die Bewegung der Phasenanderungsfront und der instationgren WBrme- 
leitung innerhalb der Wand. Das Anwachsen der gefrorenen Schicht endet dann, wenn der WIrmefluB 
aufgrund von Leitung in der Wand aufgewogen wird durch den KonvektionsfluD in die Fliissigkeit. Dann 
beginnt die gefrorene Schicht zu schmelzen; sie verschwindet letztlich wenn der Schmelzvorgang 
abgeschlossen ist. Fiir die griiDte Dicke der gefrorenen Schicht, fiir die Zeit, in der die gefrorene Schicht 
durch ein Maximum geht und fiir die gesamte Lebensdauer der Schicht werden numerische Beziehungen 

erhalten, die grundsltzliche Einfliisse van zwei charakteristischen dimensionslosen Parametern zeigen. 
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