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Abstract—The problem of the unsteady behavior of a frozen layer in a liquid flowing past a cold thick
(plane) wall is studied analytically. The integral (profile) method is utilized, which takes full account of
the movement of the phase conversion front and transient heat conduction within the wall. The growth
of the frozen layer comes to a stop when the conduction heat flux into the wall balances convection
from the liquid. At this instant, the frozen layer will begin to melt; it ultimately disappears when
melting is complete. Numerical predictions of the maximum frozen layer thickness, the time the frozen
layer passes through the maximum, and the total lifetime of the layer are obtained displaying the principal
effects of two governing dimensionless parameters.

NOMENCLATURE
¢, specific heat;
h, convective heat-transfer coefficient;
k, thermal conductivity;
L, latent heat of fusion;

q, heat flux to crust surface;

t, time;

T, temperature;

To, initial temperature of wall;

V. distance measured from wall-crust interface.

Greek symbols

*, thermal diffusivity;

B, dimensionless heat of fusion, equation (12);
4, crust thickness;

A, dimensionless crust thickness, equation (9);
or, thermal wave thickness;

Ay, dimensionless thermal wave thickness,
equation (10);

s, crust thickness on isothermal wall at steady
state, equation (17);

0;, dimensionless wall-crust interface
temperature, equation (8);

A, crust growth constant, equation (20);

o, density;

o, kpc ratio, equation (13);

T, dimensionless time, equation (11);

Tie,  dimensionless crust lifetime;

v, temperature profile shape factor,

equation (6).

Subscripts
i, at wall—crust interface;
max, at maximum crust thickness;
mp, equilibrium melting point;
o, in flowing liquid far from crust surface;
1, frozen crust material;
2, wall material.

1. INTRODUCTION

THis paper is concerned with the transient behavior
of the frozen layer (or “crust”) that forms when a
warm liquid suddenly flows over the face of a semi-
infinite solid body that is at a temperature below the
freezing point of the liquid. This type of solidification
problem arises, for example, in the freezing of a lava
stream flowing over rock or soil. The application that
motivated the present study is the freezing of molten
steel or UQO; fuel in the cold, thick-walled channel
regions surrounding a liquid—metal fast reactor core
(following a hypothetical core-disruptive accident). The
prediction of ablation of the channel wall or flow
blockages by excessive solidification requires an under-
standing of the transient behavior of the frozen layer
on the channel wall. The present investigation is limited
to the flow along a cold plane wall of infinite extent
in the direction normal to the flow. The solidification
process is initiated by suddenly allowing the warm
liquid to flow over the wall. Normally the average
temperature of the liquid will be higher than its
solidification temperature. As the frozen crust on the
wall increases in thickness, heat is transferred by con-
vection from the flowing liquid to the solid crust-liquid
interface. Heat is removed from the solidified layer by
transient conduction through the cold wall. Solidifi-
cation proceeds as long as the conduction heat flux
through the frozen crust to the wall exceeds that to
the crust surface from the flowing liquid. Once the
thermal boundary layer in the wall is sufficiently large,
the conduction heat flux into the cold wall exactly
balances convection from the liquid and there is no
latent heat generated. The crust reaches a maximum
size. After this, however, convective heat transfer be-
comes more than what can be conducted away, result-
ing actually in reduction in thickness through melting,
The rate of melting increases with time because the
conduction heat flux into the cold wall becomes in-
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creasingly smaller. Ultimately, melting will cause the
crust to disappear. The crust thickness-time history 6{(t)
constitutes the result sought. In particular, we are con-
cerned here with the following three questions: What
is the maximum crust thickness? At what value of time,
t, does the crust thickness peak ? At what value of time
does the crust disappear via melting? Physically, these
features represent the potential for flow blockage or
wall ablation in channel flow.

There is an extensive literature on the solidification
of flowing liquids on a plane wall [1-8], with most
predictions being confined to cases of (i) an isothermal
cold wall or (it) a thin wall of negligible heat capacity
which is cooled by a coolant liquid flowing along the
other side of the wall. In [8], the heat capacity of the
wall is accounted for, but the wall is sufficiently thin
so that the growing solid layer thermally “communi-
cates” with the opposite side of the wall early in the
transient. In these solidification problems, the frozen
layer never melts but, instead, approaches a steady-state
thickness. The results of the calculations for an iso-
thermal wall appear to be a special case of the solutions
for the thick (plane) wall of finite thermal conductivity
presented here.

A continuous metal casting process known as “dip-
forming” does involve freezing followed by melting of
the frozen layer [9,101.* In this process a cool metal
bar is passed continuously through a bath of super-
heated molten metal. Some metal freezes onto the bar
as it enters the bath. If the height of the bath is great,
the frozen metal crust will begin to melt. In [11] an
analysis is given of the dip-forming process. Under
most conditions of interest the bar is sufficiently thin
so that the crust growth and decay behavior depends
mostly on the heat it takes to raise the temperature
within the bar uniformly from initial temperature to
melting temperature.

2. PHYSICAL MODEL

A liquid at a fixed bulk temperature T, above its
solidification temperature T, suddenly flows over a
thick cold wall at an initially uniform temperature
To(To < Tp)t As shown in Fig. 1, a solidification front
propagates into the liquid from y = 0 at a rate deter-
mined both by the convective heat flux, ¢, from the
liquid to the phase boundary and the rate at which
the heat of solidification can be conducted from the
front. Specifically, we make the following simplifying
assumptions:

Al. The solidified layer is thin compared with its
extension in the direction of flow so that heat conduc-

*The author is mdebted to an anonymous reviewer for
calling attention to the literature on dip-forming.

+1t is assumed here that steady-state flow conditions are
achieved in the liquid before any measurable crust growth
occurs, A transient solidification process could be initiated
by considering an instantaneously cooled wall submerged
in an otherwise isothermal steady flow of liquid. However,
in many physically realistic situations, it is difficult to
imagine freezing to begin in this manner, especially on a
very thick wall.
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F1G. 1. Schematic of frozen layer on semi-infinite
wall, indicating instantaneous temperature profile
and nomenclature.

tion in this direction is small compared to that normal
to the flow.

A2. All physical properties (density, heat capacity,
thermal conductivity) are considered constant. In addi-
tion, densities of liquid and solid deposit are taken to
be the same.

A3. The Solidification (or melting) front is sharp and
planar on the scale of the crust thickness, and thermal
equilibrium exists at the phase conversion front.

A4. The convective heat-transfer coefficient between
the flowing liquid and phase boundary remains con-
stant with time and, therefore, the liquid supplies a
constant convective heat flux h(T, — T,,) to the crust
surface at all times. While h is considered constant
for each element of frozen layer, it may vary with
distance along the cold surface.

AS5. Simple analytic forms (polynomials) can be
assumed for the temperature profiles in the solidified
layer and wall regions, provided they are consistent
with the boundary conditions and the overall heat
balance requirements. A thermal boundary layer of
thickness d7 is assumed to propagate into the cold wall.

A6. In many cases occurring in practice, the thermal
boundary layer will proceed only a relatively small
distance into the wall; consequently, the cold wall may
be considered to extend to infinity in the direction
normal to the flow (i.e. in the negative y-direction).

The validity of assumptions A1-A4 was experiment-
ally demonstrated for the case of solidification of warm
water flowing over a thin plate cooled from below in
[12]. Assumption A4, in which thermal convection in
the liquid is taken to be known and unchanged due
to thickness variation of the solid phase, has been
invoked in previous analytical studies involving solidi-
fication with forced convection [1-8, 11] and melting
with free convection [13]. Assumption A5 allows the
governing partial differential equations and boundary
conditions to be replaced by an approximate first order
system of ordinary differential equations using the well-
known integral (moment) method [14] (see Section 3).

3. ANALYSIS

Subject to the above assumptions, conditions at the
moving phase boundary (y = d), at the solidified layer-
wall interface (y = 0), and across the solidified layer
(subscript 1) and wall region (subscript 2) suffice to pro-
vide the desired relationship between 4(t) and the
parameters of the problem. These conditions are:

T1(0,1) = T5(0, 1) = Ti(t) (temperature continuity) (1)



Frozen layer growth and decay in forced flow

kq (6:11) =k, (6—§> (heat flux continuity) (2)
Cy Jy=o0 0y Jy=0

an energy balance which equates the instantaneous

latent heat generation p; L dd/dt to the conductive heat

loss to the crust minus the convective heat transport

to the phase boundary, i.e.

Ldé—k oTh
P ! fy

~ > - h(Tuo - Tmp) (3)
y=d

a macroscopic heat balance across the solidified layer

d 5
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dr Jo
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and a macroscopic heat balance across the thermal
Ta(y. t)dy

boundary layer in the cold wall
d [
il
T 0T, dor

Equations (1)—(5) constitute five conditions which
the temperature profiles must satisfy. If we assume
second-order polynomials for the temperature distri-
butions Ti(y, 1) and Ti(y, t), they take the forms

T1(}¥ [) - Tmp _ _ y _ _L 2
T~ Ty W)[l 3@] +l W)][l 5(:)}
O<y<9) (6

where V(t) is a shape function eliminated in the course

of the analysis (in favor of the remaining dependent
variables), and

Iz(y, )-Tp
()—-To

©)

— y : —
_‘:1+5T(I)i| (=ér<y<0). (7

It should be noted that equation (7) is consistent with
the notion of a thermal wave thickness, beyond which
the effects of the phase change process are negligible.
Moreover, in writing equations (6), (7) we have already
invoked the condition of temperature continuity at
y = 0
It is now convenient to introduce the following set
of dimensionless variables and parameters:
T—-To
Tmp - TO
(dimensionless crust-wall interface temperature)  (8)
_ h(Tco - Tmp)
 ki(Top—To)
(dimensionless crust thickness) (9)
V2 (T, ~ Ty,
AT = <il‘> ——( p) 51‘
%) k1 (Tmp - TE))
(dimensionless thermal wave thickness)
hZ(Too - Tmp)2
Py a—— ot
kl (Tmp - TO)
(dimensionless time, Fourier number) (11)

01‘ =

(10)

T=
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L
= ————
Cy (Tmp - Tb)
(dimensionless latent heat, phase change number) (12)
k 1/2
6= <ﬂ> (kpe ratio). (13)
kypicy

Then, from equations (2)—(7), the following system of
dimensionless equations is obtained.

dA 6 Ardé

o _ L orT (14)
dt AT 0,’ dr

dA  2(1-6) 206

dA _21-6) 200, 15)
dz A Ar

T+ (1+BA—FA(1+20,)

c A\?

Equations (14)-(16) re-express the mathematical
formulation of the model and are sufficient to deter-
mine the three coupled unknown functions Ar(z; o, f),
A(t; 0, ), and 6i(t; 0, B) subject to the initial condi-
tions Ar =0, A = 0 when 7 = 0. It can be shown that
Az, A, and 6; can each be represented by a power
series of the form

b" _Cn/2 .

ek

n

however, this series can only be used for short times.
As tincreases the series ceases to converge and becomes
oscillating divergent. Therefore, for longer times, in-
cluding the period in which the crust thickness passes
through a maximum, we require a computer solution.
For this purpose and to utilize available computer
subroutines, equations (14)—(16) were converted to an
equivalent coupled system of first-order differential
equations by differentiating equation (16). The resulting
system was integrated in the forward direction using
the power series solutions to obtain the correct starting
behavior. Numerical integration was performed using
a library program (based on the Gear method [15])
available at the Applied Mathematics Division of
Argonne National Laboratory. A typical case ran in
about 6 s on the Laboratory Computer Center IBM 370
system.
4. RESULTS AND DISCUSSION

A typical set of crust thickness-time curves is shown
in Fig. 2 for several values of the kpc ratio (for the case
B = 1). One notes that A(t) passes through a maximum

T i
© |SOTHERMAL WALL
(REF. 5)
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F1cG. 2. Effect of kpc ratio on crust thickness—time
histories (§ = 1.0).
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value A at @ time th,,. At this extremum, the heat
flux coming from the liquid flow is equal to that re-
moved through the wall by conduction. The rate of
solidification passes through a stage of zero speed and
melting begins. In the case of an isothermal wall
(6 — ), the frozen layer never melts; rather it ap-
proaches a steady-state value 9, which can be obtained

by a simple heat balance [5]:
3, = k 1,(',5“&:,1,9). (17}

T, — Ty

This thickness has been used here as a reference length
so that A = d/J; [sce equation (9)]. Savino and Siegel
[5] have obtained an analytical cxpression by an iter-
ation technique for the growth of a solid layer on an
isothermal wall. This expression 1s plotted in Fig. 2.
As expected, when the kpc ratio is very large, the
growth behavior initially is that of the growth of a
solidified layer on an isothermal wall. Ultimately, how-
ever, A drops below this asymptote, owing to the effects
of heat conduction in the wall. It should be noted that
there is good agreement between the integral method
and the analytical expression provided by Savino and
Siegel [5] in this special case 6 — . For a given value
of i, the ¢ — x case probably constitutes the most
stringent test of accuracy of an approximate method
since in this casc the temperature profile exhibits the
greatest curvature. Further discussion on the accuracy
of the integral method will be postponed until Section 5.
In Fig. 3 are shown the temperature distributions
within the frozen layer and the wall. The dimension-
less temperature is shown as a function of position

T T T T T T

| 0=5 8=02
Tmax = 0.84

FiG. 3. Effect of time on temperature profile in
frozen layer and cold wall. (Profile at t > Ty
dashed for clarity only.)
normalized by crust thickness for y > 0 and thermal
boundary-layer thickness for y < 0. The dimensionless
time is treated as a parameter. Since [ = 0.2 is rather
small, we expect a large heat capacity effect. Tt is
interesting to note the behavior of the curves as <
becomes large. Initially the temperature profile within
the growing crust exhibits some curvature, due to the
effects of heat capacity (energy storage); however, the
profile becomes linear as the crust reaches maximum
thickness and tends to remain fairly close to linear
throughout the melting period. This merely implies
that once solidification ends and melting begins, the
rate of movement of the phase boundary is very much
slower than the rate of propagation of a thermal wave

MicHAFL EPSTEIN

Amax

16 10° 10

B

F1G. 4. Maximum crust thickness as a function
of heat of fusion parameter B; dependence on
kpc ratio, o.
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FiG. 5. Time to reach maximum crust thickness
as a function of heat of fusion parameter, f;
dependence on kpc ratio, .

within the crust. The temperature distribution within
the crust is approximately that corresponding to steady
state.

We now focus attention on the Anux(o, ) and
Tmax(0, f) relations shown in Figs. 4 and 5. Increasing
the kpc ratio, g, is seen to have the expected effects
of increasing the value of An.x and lengthening the
solidification period 1, of the A(r) trace. Of course,
Anmax approaches unity (i.c. 6 — J) for large values of o.
The predicted behavior of the crust lifetime, 1y(a, f),
is shown in Fig. 6. It is noteworthy that t, is
insensitive to the dimensionless latent heat B. This is
because during the melting period (T > Tma), well
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F1G. 6. Crust lifetime as a function of heat of
fusion parameter, f§; dependence on kpc ratio, o.

before the solid deposit disappears, the initial effects of
heat capacity (or temperature profile distortion) within
the solid deposit are “forgotten”. The convective heat
flux from the liquid flow is transmitted directly to the
solid deposit-wall interface. The interface temperature
T; at y = 0, therefore, approaches the simple asymptotic

behavior
N 2h(To — Trnp) <Ec££>”2
kz T

which is the surface temperature corresponding to
constant heat flux at the surface of a semi-infinite solid
[16]. Since the solid deposit is completely melted when
T; = Thp, We obtain the following simple estimate for
Tlife

T,~T, (18)

Tlife~§t72- (19)
4

It should be mentioned that when the warm fluid flows
over a thick wall of the same material, the melting front
will penetrate the wall when 7 > 7y5. The temperature
profile within the solid wall will asymptotically ap-
proach a simple, steady exponential form [16] in-
volving the melting rate (or wall ablation rate) which,
in turn, will become a linear function of the convective
heat flux.

Using the results of this section, it is interesting to
examine the behavior of an ice layer deposited from
a flowing water stream at 20°C onto a steel surface
after being chilled in liquid nitrogen (7o = —196°C).*
For this system o = 6.06 and § = 0.84. Figures 4-6
then reveal Apay = 6.8, Tmax ~ 1.7, and 1. & 25.0. To
convert these dimensionless numbers to predicted
maximum crust thickness dy,,,, time tmay for 6 to peak,

*An experimental investigation of transient freezing in
tube flows has employed water flowing in channels bounded
by thick walls initially cooled to the hqu1d nitrogen boiling
temperature [17].
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and crust lifetime ¢y, we consider turbulent flow over
a flat plate. The convective heat-transfer coefficient in
steady turbulent flow is a weak function of the stream-
wise coordinate. Therefore, the ice growth (and decay)
will be very nearly one dimensional. For a free stream
water velocity of 10°cms™!, we obtain h ~ 0.35cal
em~2s 'K ™! This estimate leads to the inferences:
Omax X 1.09cm, fmax =~ 4.17s. and 1. = 61,45,

5. ACCURACY OF THE COMPUTATIONAL METHOD
AND TRANSIENT CONDUCTION MODEL
5.1. Accuracy of the integral method

The integral (profile) method exploited here lends
itself well to the treatment of transient conduction
problems with moving boundaries [14]. However, in
any new application, it is desirable to examine its
accuracy by comparison with a closely related exact
(or numerical) solution. As usual, these exact solutions
pertain to much less general phase change problems
than that explicitly treated in Section 4. We have
already considered the accuracy of the present method
when applied to the growth of a solid deposit in the
degenerate case o — o¢ (isothermal wall) in Section 4
for B = 1. Moreover, the validity of the integral method
in this singular case has been demonstrated in [5] and
need not be belabored here. Here we examine the
growth predictions near T = 0 for arbitrary ¢ and f.
In addition, the present method is compared to the
approximate results of a mathematical model in which
the transient term is ignored in solving the conduction
equation in the solid deposit.

In the neighborhood of r = 0, the interfacial heat
transfer due to pure transient conduction overshadows
any convection due to liquid flow. In this time domain,
the problem reduces to that of a solid layer growing
in a stagnant liquid at its solidification temperature.
For 1 near zero, equations (14)—(16) simplify to vield
the growth law

A=2;7'2 (20)
where A, the “growth constant”, is given by the impticit
relation

LB
B+ (P! /ZBA3+( Y+ 2R)A% + "7‘[/1—1:0. (21)
o

Equation (21) is obtained by neglecting the last term
in equation (15) and assuming solutions of the form
A~ Y2 Ap~1Y2 and 0; = constant. A mathemat-
ically exact implicit relationship between the growth
constant and the parameters f, ¢ can be found in
[16], viz.:

Lexp(A®)[1/o+erf(1)] = (22)

|
T /5 :
As shown in Fig. 7, the integral method faithfully pre-
dicts the dependence of the growth constant on the kpc
ratio and dimensionless latent heat. In the parametric
extreme ¢ —» oo and f < [, the results are especially
encouraging, with equation (21) representing the exact
growth constant to better than 6.0%;.

An approximate solution for the frozen crust be-
havior can be obtained by neglecting the transient
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F16.7. Accuracy of present integral method when

applied to the limiting case v near zero:; com-

parison of predicted and exact growth constants
for various combinations of ¢ and f.

term in solving the conduction equation in the solid
deposit and using the resulting value of dT/0y at y = §
in equation (3) to predict the boundary motion. This
so-called quasi-steady method, intuitively expected to
be valid for “thick” thermal boundary layers in the
solid deposit (i.e. for f> 1), leads to the following
nonseparable growth-melt law when cast in the
notation of Section 3:

dA 1 T T \'2

But if equation (23) is formally applied when f > ¢ it
can be simplified to the form
dA o
ﬁa_r_ = M(m)m -1 B»1l,0<p). (24)
Equation (24) immediately gives the crust thickness-
time history:

2 o ,, 1
A=—c-t2—r (B»1;06«f)
(m)''2 B B
Comparison of the integral method with this relation
(see Fig. 8) reveals good agreement in this special case
p>»1land 6 « f.

(25)
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F1G. 8. Comparison of predicted crust thickness
time curves for the limiting case § > 1. § » 0.
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5.2. Conduction model

Most of the assumptions underlying the present
model (e.g. constant physical propertics, one-dimen-
stonal heat conduction, and well-defined phase front)
have been discussed by others and need not be con-
sidered here. Instead, we focus attention on the validity
of the assumed constant convective heat-transfer coef-
ficient (cf. Section 2, A4), for which a convenient quan-
titative criterion has apparently not previously been
given. Indeed, thermal convection in the liquid and the
thickness variation of the solid phase are both unsteady
and coupled to each other. It is reasonable to suppose.
however. that convection in the liquid is relatively
undisturbed by the moving phase boundary if the time
necessary for a thermal conduction wave to span the
liquid boundary-layer dimension, &, > k/h, is much
smaller than the time it takes the solidification front
to traverse J,. This leads us to expect negligible
transient effects in the liquid flow when £ <« 1 or when
p > 1 (see Fig. 7).* When f is not large, however, it
is not obvious that the liquid transient will, in turn,
exert much influence on the behavior of the frozen
layer. The maximum transient temperature and velocity
profile distortions must occur at a very short time after
the commencement of the freezing process since the
phase boundary velocity is greatest then. It is during
this initial period that the flow process has little effect
upon the freezing process. A detailed treatment of this
liquid flow transient is beyond the scope of this paper.
Suffice it to say that it entails the solution of a non-
similar transient boundary layer problem with the heat
transfer determined simultancously with the present
analysis of the behavior of the frozen layer.

6. CONCLUSIONS

Using the integral method, we have studied the (one-
dimensional) behavior of a frozen layer that forms on
a cold, thick wall in a flowing warm liquid, taking
into account transient heat conduction within the wall.
The behavior of the dimensionless frozen layer is shown
to depend on two parameters. One parameter is essen-
tially a dimensionless latent heat of fusion. The second
is the ratio of the transient conduction heat flow resist-
ance of the wall to that of the frozen layer. The frozen
layer grows until it reaches a maximum thickness less
than the steady-state thickness obtained for growth on
an isothermal wall. After this the frozen layer under-
goes a reduction in thickness via melting: it continues
to melt until it disappears. Numerical predictions for
the maximum thickness, the time the crust thickness
peaks, and the total lifetime of the frozen layer are
displayed graphically.

In particular systems of experimental interest. it may
be necessary to relax the one-dimensional assumption
so the treatment can be applied to the study of the
behavior of a frozen layer in a thick-walled tube or in

*Low Prandtl number liquids (i.e. Pr < 1) require that
A/(Pr)'? « 1. This imposes a condition on the ratio of the
solidification front speed to the momentum wave speed in
the liquid boundary layer.
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steel channel, Nucl. Sci. Engng. To be published.

DEVELOPPEMENT ET FUSION D'UNE COUCHE DE
CONGELATION EN ECOULEMENT FORCE

Résumeé—On étudie analytiquement le probléme du comportement instationnaire d'une couche congélée
dans un liquide s’écoulant sur une paroi épaisse (plane) et froide. La méthode intégrale (du profil) est
utilisée, elle tient pleinement compte du mouvement du front de changement de phase et de la conduction
transitoire de chaleur dans le mur. Le développement de la couche congelée s’arréte lorsque le flux de
conduction thermique dans le mur équilibre la convection dans le liquide. A cet instant, la couche congelée
va commencer a fondre; elle disparait enfin lorsque la fusion est achevée. On a obtenu des prévisions
numériques de Iépaisseur maximale de la couche congelée, de I'instant auquel la couche congelée passe
par un maximum, ainsi que de la durée de vie totale de la couche, qui permettent de dégager I'influence
de deux paramétres adimensionnels fondamentaux.

DAS ANWACHSEN UND ABSCHMELZEN EINER GEFRORENEN SCHICHT
BEI ERZWUNGENER KONVEKTION

Zusammenfassung— Das instationire Verhalten einer gefrorenen Schicht in einer Fliissigkeit, die entlang
einer kalten, dicken ebenen Wand stromt, wird analytisch untersucht. Es wird die integrale Profilmethode
herangezogen; sie beriicksichtigt die Bewegung der Phasendnderungsfront und der instationiren Wirme-
leitung innerhalb der Wand. Das Anwachsen der gefrorenen Schicht endet dann, wenn der Wirmeflufl
aufgrund von Leitung in der Wand aufgewogen wird durch den KonvektionsfluB in die Fliissigkeit. Dann
beginnt die gefrorene Schicht zu schmelzen; sie verschwindet letztlich wenn der Schmelzvorgang
abgeschlossen ist. Fiir die groBte Dicke der gefrorenen Schicht, fiir die Zeit, in der die gefrorene Schicht
durch ein Maximum geht und fiir die gesamte Lebensdauer der Schicht werden numerische Beziehungen
erhalten, die grundsitzliche Einfliisse von zwei charakteristischen dimensionslosen Parametern zeigen.
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POCT WU PA3PYUIEHHME CJ10d JIbJA TP BbIHYXJEHHOM TEYEHWI

AmHoTauna — TeopeTnyeckn MCCiedyeTcs 3alnava HECTALMOHAPDHOrO MNOBEUEHHS ClIOA Jbjla T1pH
00TeKaHUH XHUAKOCTHIO XOIOAHOMN NJIOCKOH CTEHKH 001boi TomuuHsl. McuosblyeTcas HHTETpaib-
Hbli METO[, KOTOPbI AOCTATOMHO MONHO OOBACHAET JABHXCHHE (poHTa (Ga3loBOro Inepexoa H
HEeCTALMOHAPHY1O TenIOoNpOBOIHOCTb B cTeHke. Cioit abaa npekpauaer pocT. KOT/d TCI0BOA
MOTOK B CTCHKY yPaBHOBELUMBAET KOHBEKLMIO OT XKKAKOCTH. B 3TOM cnyuvae ClIOH [1b1a HAYUHACT
TasTb, OH MNOJIHOCTBIO KHcyezaeT nocse TasHuus. [ToaydeHHblE YHCIICHHbBIE PACHETHE MAKCHMAILHON
TOMLUIMHBI C/I0S NbAA, BPEMEHM QOCTHXEHHSA CI0E€M JibAd MAKCHMAILHON BCIIMYHHLL H CYMMAPHOC
BPEMS KH3HU CJI0S OTPAKAIOT OCHOBHYIO POJIb B Npouecce AByx Oe3pa3MepHLIX UAPANMECTPOB.



